1261/1271 Re-usable ear plugs with storage case

Data Sheet

Product Description

The 1261 (uncorded) and 1271 (corded) are re-usable ear plugs designed for insertion into the ear canal to help reduce exposure to hazardous levels of noise and loud sounds.

Key Features

- Unique outer flange design helps keep the ear plug in place thus improving wearer comfort and helping assure protection.
- · Soft formulation, provides added comfort.
- New finger grip design improves ease of insertion.
- Storage case with belt clip helps keep plugs convenient, clean and protected in between use.
- Polyester cord (1271) helps prevent loss, and ensures product is available when required.

Applications

The 1261/1271 is ideal for protection against noise arising from a wide range of applications in the workplace. Examples of typical applications include:

- · Metal industry
- Automotive
- Construction
- Textile
- Chemical & pharmaceutical
- Printing
- Woodworking
- Engineering

Standard & Approval

The 1261/1271 are tested the European Standard EN352-2:1993 and meet the Basic Safety Requirements as laid out in Annex II of the European Community Directive 89/686EEC. The product has been examined at the design stage by the British Standards Institution, 398 Chiswick High Road, London W4 4AL, UK (0086).

Materials

The following materials are used in the manufacture of this product.

Ear plugs – Monoprene

Cord- Polyester with acetate tips

1261/1271 Re-usable ear plugs with storage case

Attenuation values (to EN24869-1)

Frequency (Hz)	63	125	250	500	1000	2000	4000	8000
Mf (dB)	26.6	27.7	28.4	29.5	29.6	35.6	35.4	38.9
sf (dB)	9.4	9.9	10.9	9.6	8.2	6.8	9.6	6.7
Mf-sf(dB)	17.2	17.8	17.5	19.9	21.4	28.8	25.8	32.2

SNR = 25dB H = 27dB M = 22dB L = 20dB

Key:

Mf = Mean attenuation value

sf = Standard deviation

 \mathbf{H} = High-frequency attenuation value (predicted noise level reduction for noise with $L_C - L_A = -2dB$)

 $\mathbf{M} = \mathbf{M}$ Medium-frequency attenuation value (predicted noise level reduction for noise with $L_C - L_A = +2dB$)

L = Low-frequency attenuation value (predicted noise level reduction for noise with $L_C - L_A = +10 dB$)

 $\begin{aligned} \textbf{SNR} = & \text{Single Number Rating (the value that is subtracted from the measured C-weighted sound pressure level, L_{C} in order to estimate the effective A-weighted sound pressure level inside the ear).} \end{aligned}$